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Genome Wide Meta-Analysis 
identifies common genetic 
signatures shared by heart function 
and Alzheimer’s disease
M. e. Sáez  1, A. González-pérez1, B. Hernández-Olasagarre2, A. Beà3, S. Moreno-Grau2,4, 
i. de Rojas  2,4, G. Monté-Rubio2, A. Orellana2,4, S. Valero2,4, J. X. comella  4,5, D. Sanchís3*& 
A. Ruiz  2,4*

Echocardiography has become an indispensable tool for the study of heart performance, improving 
the monitoring of individuals with cardiac diseases. Diverse genetic factors associated with 
echocardiographic measures have been previously reported. The impact of several apoptotic genes in 
heart development identified in experimental models prompted us to assess their potential association 
with human cardiac function. This study aimed at investigating the possible association of variants of 
apoptotic genes with echocardiographic traits and to identify new genetic markers associated with 
cardiac function. Genome wide data from different studies were obtained from public repositories. After 
quality control and imputation, a meta-analysis of individual association study results was performed. 
Our results confirmed the role of caspases and other apoptosis related genes with cardiac phenotypes. 
Moreover, enrichment analysis showed an over-representation of genes, including some apoptotic 
regulators, associated with Alzheimer’s disease. We further explored this unexpected observation 
which was confirmed by genetic correlation analyses. Our findings show the association of apoptotic 
gene variants with echocardiographic indicators of heart function and reveal a novel potential genetic 
link between echocardiographic measures in healthy populations and cognitive decline later on in life. 
These findings may have important implications for preventative strategies combating Alzheimer’s 
disease.

Echocardiographic assessment of cardiac structure offers prognostic information about cardiac conditions such 
as heart failure (HF)1,2. Pathological processes including cardiomyocyte cell death, inflammatory cell response 
and changes in interstitial tissue of the heart are factors leading to adverse remodelling and HF3.

A number of apoptotic genes have been investigated as potential targets to prevent cardiomyocyte death, 
but it is now increasingly evident that caspase-dependent cell death plays a minor if any role in adult myocyte 
loss4, which involves Cyclophilin D5 and calpains6. By contrast, caspase proteins are now recognized as impor-
tant factors for initial differentiation of stem cells to cardiomyocytes7, and its deficiency in vivo was shown to 
induce abnormal heart development8,9. In rodent cardiomyocytes, caspase-3 is involved in WNT signalling and 
myocyte growth10,11, contributing also to muscle-specific gene splicing by cleaving PTB12. In addition, apoptotic 
DNA nucleases were shown to play a role in the developmental process of C.elegans including the C.elegans 
Caspase-associated DNase (CAD), ENDOG and TATD orthologues13. Furthermore, ENDOG also contributes 
to the signalling pathways determining myocyte size through the control of reactive oxygen radicals (ROS)14,15. 
These facts lead us to hypothesize that caspases and the nucleases ENDOG and TATD play relevant functions in 
cardiomyocyte proliferation and maturation during development.
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Recent genome wide association studies have been performed for evaluating comprehensive sets of echo-
cardiographic traits in well characterized individuals included in large cohort studies16,17. Increased left ven-
tricular mass (LVM) is a well-established predictor of adverse cardiovascular events and premature death18,19. 
End-Diastolic LV Internal Dimension (LVID) and LV Wall Thickness (LVWT) are other measures of left ven-
tricular hypertrophy (LVH), usually a pathological compensatory mechanism of the LV overload which evolves 
towards progressive LV dysfunction and HF. The principal role of the left atrium (LA) is to modulate LV filling 
and cardiovascular performance, being LA enlargement and dysfunction also predictors of cardiovascular events, 
especially in patients with atrial fibrillation (AF)20. The risk of aortic aneurysm is strictly related to the diameter 
of the ascending aorta, and recent studies have shown high prevalence of aortic root (AROT) enlargement in the 
hypertensive population21. Using data from publicly available repositories, we aimed to explore the association 
between a selected group of candidate apoptosis-related genes and these echocardiographic phenotypes by means 
of meta-GWAS. Furthermore, we aimed to assess previously reported signals in our study datasets and performed 
an agnostic analysis to investigate relevant pathways revealed for each trait. Following the leading results of this 
analysis, we further explored the unsuspected genetic relationship between Alzheimer’s disease (AD) and these 
echocardiographic traits, by estimating their genetic correlation, and identifying common genetic determinants 
of these conditions.

Materials and Methods
Experimental design. This study is aimed at identified genetic variants associated with echocardiographic 
traits, using both a candidate gene approach and an agnostic approach in retrospective datasets available in public 
repositories.

Study cohorts. The four cardiovascular datasets analysed in this study were downloaded from dbGAP 
(https://www.ncbi.nlm.nih.gov/gap) after requesting the appropriate permissions. In the case of a multi-ethnic 
study, only Caucasian samples after principal component analysis (PCA) were retained for analysis. A summary 
of the clinical characteristics of these populations is shown in Table 1. A full description of each of them is pro-
vided in the Supplementary Info.

A total of seven AD datasets were used to further explore the observed enrichment of top genes derived from 
the analysis of echocardiographic traits on genes involved in AD pathways. As for previously described datasets, 

Dataset TRAIT (units)

All Males Females

MEAN (SD) MIN/MAX MEAN (SD) MIN/MAX MEAN (SD) MIN/MAX

CARDIA
(N = 1362, 640 males, 722 females)

AGE (yrs) 25.51 (3.33) 17/32 25.59 (3.27) 17/32 25.44 (3.38) 18/31

BMI (kg/m2) 23.71 (4.04) 16.28/45.09 24.43 (3.60) 16.81/43.17 23.07 (4.31) 16.28/45.09

AROT (cm) 2.81 (0.39) 1.67/4.27 3.04 (0.36) 1.67/4.27 2.61 (0.30) 1.88/3.68

LAS (cm) 3.52 (0.46) 2.11/5.24 3.69 (0.44) 2.39/5.19 3.37 (0.41) 2.11/5.24

LVID (cm) 4.99 (0.48) 3.66/7.05 5.24 (0.44) 3.99/7.05 4.76 (0.40) 3.66/6.12

LVM (g) 157.53 (47.08) 49.85/364.91 145.44 (42.00) 63.38/364.91 147.44 (44.55) 58.06/328.80

LVWT (cm) 1.68 (0.25) 1.01/3.30 1.80 (0.24) 1.17/2.96 1.57 (0.22) 1.01/3.30

CHS
(N = 2988, 1178 males, 1810 females)

AGE (yrs) 72.42 (5.47) 64/100 73.09 (5.72) 65/100 71.98 (5.26) 64/97

BMI (kg/m2) 26.36 (4.47) 14.65/49.41 26.38 (3.64) 15.80/46.23 26.35 (4.94) 14.65/49.41

AROT (cm) 3.15 (0.46) 1.54/4.38 3.45 (0.43) 1.54/4.83 2.96 (0.36) 1.84/4.54

LAS (cm) 3.84 (0.65) 1.77/8.78 4.00 (0.66) 1.81/8.78 3.73 (0.61) 1.77/6.50

LVID (cm) 4.90 (0.65) 3.01/8.27 5.20 (0.68) 3.28/8.27 4.72 (0.56) 3.01/6.98

LVM (g) 146.81 (46.45) 58.12/435.70 172.14 (50.96) 70.90/435.70 131.85 (36.00) 58.12/392.88

LVWT (cm) 1.72 (0.29) 0.96/3.92 1.81 (0.32) 1.12/3.92 1.67 (0.26) 0.96/3.12

FHS
(N = 2668, 1224 males, 1444 females)

AGE (yrs) 33.61 (9.29) 5/60 33.50 (9.38) 11/60 33.70 (9.22) 5/59

BMI (kg/m2) 24.91 (4.13) 13.52/50.98 26.27 (3.60) 13.52/43.63 23.76 (4.21) 15.02/50.98

AROT (cm) 3.14 (0.40) 2.00/4.90 3.38 (0.37) 2.00/4.90 2.94 (0.30) 2.00/4.20

LAS (cm) 3.72 (0.51) 2.20/6.00 3.94 (0.47) 2.50/6.00 3.52 (0.46) 2.20/5.70

LVID (cm) 4.84 (0.47) 2.70/7.20 5.09 (0.43) 3.10/7.20 4.63 (0.39) 2.70/6.00

LVM (g) 168.15 (52.67) 64.33/593.40 194.29 (53.57) 85.07/593.40 146.23 (40.52) 64.36/392.08

LVWT (cm) 1.88 (0.25) 0.84/3.90 1.96 (0.24) 0.84/3.90 1.80 (0.22) 0.85/2.90

MESA
(N = 2379, 1151 males, 1210 females)

AGE (yrs) 61.64 (10.18) 39/96 61.4 (10.36) 39/86 61.90 (10.01) 44/96

BMI (kg/m2) 28.65 (5.67) 15.36/65.28 28.41 (5.44) 15.36/54.50 28.86 (5.85) 15.68/65.28

AROT (cm) 3.20 (0.38) 0.84/1.48 3.36 (0.38) 1.72/4.98 3.07 (0.33) 1.64/4.86

LAS (cm) NA NA NA NA NA NA

LVID (cm) 4.48 (0.57) 2.33/7.39 4.58 (0.60) 2.33/7.36 4.39 (0.53) 2.54/7.39

LVM (g) 120.16 (29.27) 47.85/315.08 137.42 (27.35) 61.58/315.08 104.16 (20.63) 47.85/227.49

LVWT (cm) 1.92 (0.40) 0.85/3.93 2.09 (0.39) 0.90/3.93 1.76 (0.33) 0.85/3.56

Table 1. Study sample characteristics. BMI: Body Mass Index; AROT: aortic root; LAS: Left Atrial Size; LVID: 
Left Ventricular Internal Dimension; LVM: Left Ventricular Mass; LVWT: Left Ventricular Wall Thickness.
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only Caucasian samples after principal component analysis (PCA) were retained for analysis. Demographic char-
acteristics of these datasets are summarized in the Supplementary Table 1.

Phenotypes. Data from the most recent available echocardiographic examinations of each cohort were 
included in this study. The following five phenotypes were analysed: LVM (g), AROT (cm), LVID (cm), LA size 
LAS, cm), and LVWT (cm). The latter was defined as the sum of the End-Diastolic Thicknesses of the Posterior 
Wall (TPW) and End-Diastolic Thicknesses of the Interventricular Septum (TIS). LVM was calculated using the 
formula 0.8 [1.04{(LVID + TIS + TPW)3 −(LVID)3}] + 0.622.

Genotyping and imputation. The cardiovascular datasets included in this study were genotyped using 
different platforms: CARDIA and MESA were genotyped using the Affymetrix Genome-Wide Human 6.0 array, 
whereas the FHS was genotyped using the Affymetrix Human 500k array and the CHS cohort with the Illumina 
HumanCNV370-Duo v1.0.

AD datasets were genotyped using the Illumina arrays Human 610‐Quad BeadChip (ADNI1, AddNeuroMed 
batch 1), the HumanOmniExpress BeadChip (ADNI2/GO, AddNeuroMed batch 2, ADGC dataset 3), the 
Human660W-Quad (ADGC datasets 1 and 2) and the HumanHap300-Duo BeadChip (The Mayo study) or the 
Affymetrix 250k NspI (the Neocodex-Murcia study), 500k (the TGEN and GenADA studies) or 6.0 (ROSMAP 
study) arrays.

Prior to imputation, we first performed an extensive quality control excluding individuals with more than 3% 
missing genotypes, with excess autosomal heterozygosity (>0.35), those showing a discrepancy between geno-
typic and reported sex, as well as individuals of non-European ancestry based on PCA using SMARTPCA23. At 
the genotype level, we removed single nucleotide polymorphisms (SNPs) with missing genotype rate > 5%, not in 
Hardy-Weinberg equilibrium (p < 10−6) and SNPs with minor allele frequency (MAF) < 1%. Duplicated and related 
individuals were identified and removed by means of Identity By State (IBS) estimates within and across studies.

Genotype imputation is aimed at estimating unobserved genotypes using as reference known haplotypes from 
a well characterized population. Imputation was performed using the minimac3 algorithm and the SHAPEIT tool 
for haplotype phasing at the University of Michigan server using the HRC reference panel24. After imputation, 
SNPs with an R2 quality estimate lower than 0.3 were excluded from further analyses in accordance with software 
instructions.

Statistical analysis. All analyses were performed in Caucasian populations only. Individuals with prevalent 
myocardial infarction (MI) or congestive heart failure (CHF) were excluded from the study. Linear regression 
models available from PLINK software25 were fitted to investigate the association between genotypes and quanti-
tative phenotypes, with age, sex, body mass index and the four principal components as covariates. For each phe-
notype, we obtained summary estimates of association across studies by using a fixed-effects model meta-analysis 
procedure implemented also in PLINK. For the genome wide SNP analysis, the conventional GWAS significance 
threshold was used (p = 5 × 10−8)26, whereas signals with p value < 10−5 were considered as suggestive of associ-
ation and reported in the Supplementary Tables 2–6.

Gene-wise statistics were computed using MAGMA software, which takes into account physical distance and 
linkage disequilibrium (LD) between markers to estimate a summary gene p-value using a known approximation 
of the sampling distribution27. All SNPs with MAF above 1% were used in these analyses. At each trait, genes were 
ranked according to the global p mean value.

Top results from MAGMA genome wide analyses were tested for over-representation of genes involved in 
known pathways, functions and diseases. For these enrichment analyses, we applied a moderated threshold of 
p < 10−3, which has been showed to have a good power for detecting relevant pathways and functions while 
maintaining type 1 error controlled27. For these analyses, we used the R packages Webgestalt (GO terms, KEGG, 
Wikipathways and Reactome) and enrichR28,29 (Aging perturbations from GEO, Biocarta, Panther Disease per-
turbations from GEO Disease signatures from GEO, dbGaP and OMIM) with default parameters.

In order to explore genetic correlation between different traits we used a bivariate GREML analysis with 
GTCA software30. This method allows to identify pleiotropic gene effects associated with different diseases or dis-
orders, providing a single measure of the proportion of shared genetic determinants. Furthermore, we obtained 
summary estimates of association across phenotypes performing unweighted meta-analysis of Fisher p-values.

Results
Overall, our study included data from 11,559 individuals with echocardiographic phenotypes from four different 
datasets (Table 1). Figure 1 illustrates the data analysis roadmap as explained in Materials and Methods. After 
imputation and quality control, we obtained about 7 million SNPs with MAF > 0.01 that were tested for associa-
tion with echocardiographic traits at each study. We then performed a meta-GWAS to obtain summary estimates 
of association for each SNP. Genomic inflation factor (λ) ranged from 0.994 to 1.022 in these analyses, indicating 
absence of population stratification due to hidden population structure (Fig. 2). MAGMA software was used 
for summarizing the meta-GWAS SNP results in order to obtain a gene-wise statistic of the association between 
18,480 genes and the five phenotypes.

Association of apoptosis-related genes with cardiac phenotypes. Because there is experimental 
evidence supporting the role of some apoptosis-related genes with cardiac development and disease, we first 
analysed the potential association of polymorphisms in a series of apoptosis-related genes with the cardiac phe-
notypes. Table 2 shows the association results of the 20 apoptosis-related candidate genes. Study-wide statisti-
cally significant results were observed for the association of a genetic locus on 2q33.1 involving two initiator 
caspases (CASP8 and CASP10) and the apoptosis regulator protein CFLAR (CASP8 And FADD Like Apoptosis 
Regulator, c-FLIP) with LVM. The same three genes were also linked to LVID with p < 0.05, along with the Fas 
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receptor-associated adaptor FADD (Fas-associated protein with death domain) and BCL2 (B-cell lymphoma-2) 
genes. BCL2, FADD and TATDN1 (TatD DNase domain containing-1) showed a trend for association with AROT. 
We did not find evidence of association of any calpain family member with any of the analysed traits (data not 
shown).

Agnostic GWAS of genetic variants associated with cardiac phenotypes and enrichment anal-
ysis of top genes on echocardiographic traits. Although we did not find any GWAS significant signal 
at SNP-level (p < 5 × 10−8) related with the analysed phenotypes, we observed several suggestive signals at the 
p < 10−5 level (Supplementary Tables 2–6), most of them intragenic (Fig. 2). For each genotype, we additionally 
performed a gene-level, ranking genes according to the MAGMA computed SNP-wise p-value, which uses the 
full spectrum of SNP-level meta-analysis results (Table 3 and Supplementary Tables 7–11). Overall, these top 
genes from MAGMA gene level analyses (p < 10−3) showed little overlap across phenotypes (Fig. 3a), with the 
exception of TECTB/ACSL5 locus for LVID and LVWT, genes associated to cholesterol and fatty acid metabo-
lism respectively, and ZNF678, a zinc finger protein involved in immune response, for LVM and LVWT genes. 
Enrichment analysis (Fig. 3b, Supplementary Tables 12–16) suggested some processes underlying or related to 
one or more echocardiographic traits such as lymphocyte activity, cardiomyopathy, left ventricular hypertrophy 
or oxidative stress response Interestingly, enrichment analysis also suggested an over-representation of genes dif-
ferentially expressed in AD samples versus control as well as genes involved in tau, presenilin and amyloid biology 
(APH1B, KLC3, KLC4, MAPK4, MAPK13;MAPK14, PPP2R5D, RBPJ, TCF7L1).

Figure 1. Data analysis workflow.
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Genetic correlation analysis between echocardiographic traits and AD. The association of gene 
variants related to echocardiographic measures with mental illnesses, the increasing interest in the vascular 
aspects of AD and availability of diverse AD datasets, prompted us to explore in more depth the relationship 

Figure 2. Manhattan plots of the meta-analyses for the different echocardiographic traits. The threshold 
for genome-wide significance (P < 5 × 10−8) is indicated by the red line, while the blue line represents the 
suggestive threshold (P < 1 × 10−5). Loci previously associated with echocardiographic traits are shown in blue, 
and newly associated loci are shown in red.

GENE CHR START STOP REGION NSNPS NPARAM
AROT
p-value

LAS
p-value

LVID
p-value

LVM
p-value

LVWT
p-value

BCL2 18 60590579 61187011 18q21.33 1760 211 0.0020* 0.7439 0.0366* 0.1299 0.2162

CASP1 11 104696235 105105884 11q22.3 1059 71 0.6532 0.4927 0.7579 0.1082 0.2240

CASP2 7 142785308 143204789 7q34 831 101 0.7667 0.7005 0.8837 0.9213 0.6935

CASP3 4 185348850 185770629 4q35.1 1373 100 0.8597 0.0895 0.7466 0.3404 0.7148

CASP4 11 104613594 105039325 11q22.3 1159 80 0.5809 0.6457 0.8445 0.1983 0.2090

CASP5 11 104664967 105093895 11q22.3 1121 74 0.6527 0.5702 0.7841 0.1146 0.1843

CASP6 4 110409785 110829814 4q25 981 89 0.7720 0.2404 0.6319 0.6570 0.2016

CASP7 10 115238921 115690668 10q25.3 1276 104 0.7140 0.0763 0.6045 0.8870 0.5393

CASP8 2 201898166 202352434 2q33.1 970 81 0.3781 0.2791 0.0272* 3.20 × 10−5** 0.1006

CASP9 1 15617896 16051407 1p36.21 1184 87 0.6575 0.2219 0.6237 0.0920 0.7480

CASP10 2 201847621 202294129 2q33.1 961 82 0.4802 0.2476 0.0242* 5.76 × 10−5** 0.0787

CASP12 11 104556445 104969397 11q22.3 998 78 0.6042 0.6827 0.7403 0.1616 0.3387

CASP14 19 14960291 15369104 19p13.12 1751 162 0.9466 0.4207 0.3398 0.2161 0.2630

CFLAR 2 201780877 202237411 2q33.1 926 76 0.6599 0.1414 0.0243* 1.07 × 10−4** 0.0522

ENDOG 9 131380779 131784955 9q34.11 496 43 0.7003 0.6451 0.6393 0.1198 0.6389

FADD 11 69849269 70253508 11q13.3 1293 122 0.0029* 0.9020 0.0398* 0.1055 0.6117

FAS 10 90550288 90975542 10q23.31 1352 137 0.4230 0.3532 0.5120 0.6042 0.8215

TATDN1 8 125300735 125751329 8q24.13 1421 137 0.0084* 0.7526 0.0766 0.5603 0.7433

TATDN2 3 10090177 10522906 3p25.3 1340 114 0.7445 0.8405 0.7814 0.1642 0.6076

TATDN3 1 212765170 213190167 1q32.3 1561 78 0.5599 0.6128 0.4637 0.3032 0.9205

Table 2. Candidate genes for echocardiographic traits. CHR: chromosome; START bp: 5’end base pair; STOP 
bp: 3’end base pair; NSPS: number of SNPs genotyped for the gene; NPARAM: number of SNPs used for 
computing the gene wise statistics; p: SNP-wise mean p value. *p-value < 0.05; **p-value < 5 × 10−4.
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RANK GENE NSNPS NPARAM P
AROT
1 SMG6 1594 114 1.35E-07
2 METTL16 1185 111 2.73E-07
3 MNT 1045 100 4.22E-07
4 SGSM2 1117 100 8.54E-07
5 SYNE1 3102 235 1.03E-06
6 TSR1 1015 98 1.32E-06
7 SRR 1010 90 1.61E-06
8 SAXO1 2109 154 1.68E-06
9 ESR1 2731 201 3.24E-06
10 RRAGA 1700 116 7.73E-06
LAS
1 AGMO 2628 182 2.39E-05
2 UBE2T 774 84 7.69E-05
3 NT5M 1127 110 9.08E-05
4 SLC35F2 1431 96 1.11E-04
5 SH2D6 1194 115 1.46E-04
6 E2F7 1476 125 1.59E-04
7 CAPG 1281 118 2.03E-04
8 PPP1R12B 1264 97 2.40E-04
9 ELMOD3 1364 129 2.42E-04
10 RAB39A 1226 89 2.82E-04
LVID
1 SKA1 1152 92 2.11E-07
2 CXXC1 1222 110 1.17E-06
3 MBD1 1277 106 1.36E-06
4 CFAP53 1308 111 1.50E-06
5 CA12 1222 112 4.40E-06
6 USP3 1296 85 1.73E-05
7 FBXL22 1078 65 2.12E-05
8 ADRB2 1296 134 5.56E-05
9 ANKS6 1496 137 6.32E-05
10 LYRM9 857 85 6.97E-05
LVM
1 MLF1 1250 53 1.97E-07
2 RSRC1 2313 63 3.72E-07
3 CLK1 818 91 8.43E-06
4 NIF3L1 789 78 8.79E-06
5 PPIL3 807 82 8.82E-06
6 GFM1 1305 63 1.08E-05
7 ORC2 854 75 1.60E-05
8 LXN 1186 57 1.76E-05
9 RNF20 1444 102 1.93E-05
10 BZW1 868 104 2.21E-05
LVWT
1 ALDH7A1 1467 154 1.22E-06
2 OR52A5 1732 132 3.69E-06
3 MAPK13 899 106 4.70E-06
4 PHAX 1392 141 7.73E-06
5 OR52A1 1735 141 8.10E-06
6 OR52E2 1688 115 8.21E-06
7 GRAMD3 1640 168 1.14E-05
8 ZNF804A 1589 89 1.28E-05
9 OR52J3 1697 112 1.68E-05
10 PRSS38 1094 88 1.85E-05

Table 3. Top ranked genes for each echocardiographic trait after genome wide association meta-analysis 
and gene-wise statistics calculation. AROT: aortic root; LAS: Left Atrial Size; LVID: Left Ventricular Internal 
Dimension; LVM: Left Ventricular Mass; LVWT: Left Ventricular Wall Thickness; NSPS: number of SNPs 
genotyped for the gene; NPARAM: number of SNPs used for computing the gene wise statistics.
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between the echocardiographic phenotypes and AD. We performed a genetic correlation analysis using the study 
dataset (comprised by 11,559 individuals with echocardiographic phenotypes) along with 12,730 AD cases and 
controls both from internal and publicly available databases. First, we estimated the proportion of variance, as 
a proxy of trait heritability, explained by all SNPs in each one of these traits31, which was higher for AD (0.38) 
than for the echocardiographic phenotypes (range: 0.17-0.36). Then, we looked for shared genetic loci across the 
genome between echocardiographic traits and AD using GREML analyses as suggested by the enrichment anal-
yses. Specifically, we observed a positive correlation between AD and LAS (rG = 0.167, p = 0.0334), and negative 
correlations between AD and LVID (rG = −0.196, p = 0.0056), and AD and LVM (rG = −0.198, p = 0.0165); of 
note, LVM and LVID are the most correlated echocardiographic traits (rG = 0.988, p < 0.00001) (Fig. 4a). The 
sign of the rG estimates determines whether a direct or inverse relationship between the two phenotype traits is 
observed. Therefore, our results suggest that SNPs that increase the risk of AD tend to be associated with increas-
ing LAS values. On the contrary, we found that SNPs associated with increased risk of AD tend to be associated 
with decreasing ventricular measures (or vice versa), in particular LVID and LVM.

Based on these findings we performed a SNP-wise meta-analysis by pooling Fisher association p-values of 
two or more phenotypes aimed at identifying genes contributing most to both heart measures and AD. Thus, we 
combined in these meta-analyses p-values for LAS&AD, LVID&AD, LVM&AD, LAS&LVID&LVM&AD and 
LVID&LVM&AD and calculated gene-wise statistics (Table 4, Supplementary Tables 17–21). We observed a large 
overlap of genes falling under the p < 10−3 threshold in the different meta-analyses performed, with a group of 
30 genes consistently associated in all of them, including the CASP8/CASP10/CFLAR locus and the GABRR1 
GABA receptor (Fig. 4b). Consequently, apoptosis related pathways driven by the CASP8, CASP10 and CFLAR 
locus were persistently observed in the subsequent enrichment analyses (Fig. 4c, Supplementary Tables 22–25). 
We also observed an enrichment on genes present at the neuronal synapse such as glutamate (GRM5), cholinergic 
(CHRNA2) and GABA receptors (GRIN2C, GABRR1, GABRR2 and GABBR2), teneurin (TENM2), calsyntenin 
(CLSTN3), or the cytoskeletal alpha-actin protein (ACTN2) for the diverse meta-analyses involving ventricular 
measures and AD.

Discussion
Our study, based on data from 11,559 individuals free of cardiovascular disease, shows that variants affecting 
diverse genes involved in apoptosis regulation associate with echocardiographic phenotypes in humans. We have 
obtained these results by both hypothesis-driven and agnostic approaches. In addition, novel findings from the 
analysis of our GWAS also include previously unnoticed associations of variants in genes involved in cell prolifer-
ation, DNA replication and mRNA splicing with left ventricular morphology. Our data also suggest the existence 
of a set of genes, mainly related to apoptosis/inflammation signalling, whose variants are associated with both 
cardiac phenotype and AD.

Our hypothesis-driven analysis showed that caspases 8 and 10 and the regulatory CFLAR (cFLIP) gene are strong 
predictors of LVM. Furthermore, our hypothesis-free approach found that caspase dependent pathways were overrep-
resented among top genes associated with the LVM phenotype. These results support our a priori hypothesis that the 
apoptotic signalling influences heart morphology with potential impact on heart performance. Our hypothesis was 
based in previous experimental work, including our own, showing that deficiency9,11 or overexpression32 of key apop-
totic genes altered normal cardiomyocyte differentiation and heart development independently of cell death. Indeed, 
although these genes are best known for their role in regulating apoptotic cell death, experimental evidences show that 
the same genes also regulate myocyte proliferation, inflammation and hypertrophy in the heart9,11,33–35. Because cell 
death is not a major event during heart development, and based on the above experimental work, we suggest that the 
relationship between the apoptotic genes and the cardiac phenotype might involve non-apoptotic functions.

In order to estimate the robustness of our GWAS analysis, we asked whether we had reproduced some signals 
already observed in previous genetic studies. Indeed, we found the already published link between SMG6, TSR1 
and SRR genes and AROT16,17, but failed to detect statistically significant associations for other gene variants, 
possibly due to the limited power of this study. Given the strong influence of age in echocardiographic parame-
ters, the diverse population structure of the study cohorts could also affect our power in the meta-analysis, with 
signals not replicating in populations largely differing in their median age. However, our analysis demonstrated 
genetic association between variants of genes previously shown to influence heart function and cardiac hypertro-
phy in experimental models, such as MLF136, which associates with LVM phenotype in our study, and KCNIP2 
(KChIP2)37–39 and TRAF3IP240,41, which have also been associated with LVWT and LVM phenotypes respectively 
in humans and in this study as well. Also, from the top list of genes whose variants are associated to LIVD, ANKS6 
has been associated with heart malformations42.

The GWAS analysis also showed association of variants of a group of odorant receptors genes located in the 
11p15.4 chromosomic region coding (subfamilies 51, 52 and 56) or in chromosome 16 (OR2C1) with LVWT 
and LVID. Expression of these genes in non-neural tissues is related to the control of different processes, includ-
ing glucose and oxygen homeostasis or cell cycle control43, and has been shown to be involved in the regula-
tion of cardiac function in rodent experimental models through interaction with fatty acids44. Therefore, our 
genetic results open the possibility that odorant receptors’ activity can influence cardiac function in humans. 
Interestingly, low OR expression has been found in the cortex of neuro-psychiatric patients45 and a genetic 
microduplication in the 11p15.4 region has been associated with familial intellectual disability and autism46.
Unexpectedly, we found enrichment on AD related pathways for LAS, LVID and LVM that led us to explore com-
prehensively a possible link between AD and all these echocardiographic traits. Intriguingly, our results revealed 
for the first time a potential genetic link between AD and LAS, paired with a negative correlation between AD 
and either LVM or LVID. Interestingly, in line with our observation, recent reports found that LAS and LVID 
were independently associated to cognitive function in older adults, being predictors of cognitive decline after 14 
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years of follow-up47,48. The opposite direction of the correlation coefficients for atrial and ventricular measures 
could be related to the different development patterns of these chambers during embryogenesis49 and with the 
described strong association of left atrial size with long-term exposure to vascular risk factors, particularly high 

Figure 4. Results from the combined analysis of echocardiographic traits and AD. (a) Genetic correlations (rG) 
between echocardiographic traits and AD. (b) Venn diagram showing the overlap of top genes derived from 
gene-wise association analysis. (c) Enrichment analysis of top genes from meta-analysis of echocardiographic 
traits and Alzheimer’s disease. RF (rich factor): number of genes from the input list included in each category 
divided by the total number of genes in the category.

Figure 3. Results from gene-wise analysis of echocardiographic traits. (a) Venn diagram showing the overlap 
of top genes of the different echocardiographic traits analysed. (b) Plot summarising main results of the 
enrichment analysis of top genes from gene-wise statistics. RF (rich factor): number of genes from the input list 
included in each category divided by the total number of genes in the category.
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RANK GENE NSNPS NPARAM P
LAS & AD
1 NIF3L1 467 46 1.03E-06
2 PPIL3 493 50 1.10E-06
3 RSRC1 1965 43 1.53E-06
4 CLK1 526 55 1.79E-06
5 MLF1 1068 33 2.16E-06
6 ORC2 486 40 4.67E-06
7 BZW1 596 65 1.04E-05
8 SLC5A4 1361 79 1.46E-05
9 RFPL2 1308 72 1.94E-05
10 C22orf42 1226 65 2.57E-05
LVM & AD
1 RSRC1 1965 43 3.39E-11
2 MLF1 1068 33 3.82E-11
3 NIF3L1 467 46 5.98E-09
4 GFM1 1122 41 6.53E-09
5 PPIL3 493 50 6.66E-09
6 ALDOB 918 79 7.33E-09
7 ZNF189 886 80 8.96E-09
8 MRPL50 896 81 9.63E-09
9 BAAT 932 85 1.02E-08
10 LXN 1015 38 1.12E-08
LAS & LVID & LVM & AD
1 MLF1 1068 33 3.25E-10
2 RSRC1 1965 43 4.65E-10
3 ALDOB 918 79 3.10E-09
4 BAAT 932 85 3.66E-09
5 ZNF189 886 80 3.72E-09
6 MRPL50 896 81 3.91E-09
7 TMEM246 1028 74 5.01E-09
8 RNF20 1056 61 6.62E-09
9 NIF3L1 467 46 1.82E-08
10 PPIL3 493 50 2.09E-08
LVID & AD
1 SKA1 921 74 4.89E-06
2 MLF1 1068 33 6.39E-06
3 ALDOB 918 79 8.34E-06
4 BAAT 932 85 9.55E-06
5 RNF20 1056 61 9.63E-06
6 ZNF189 886 80 1.02E-05
7 TMEM246 1028 74 1.03E-05
8 MRPL50 896 80 1.06E-05
9 RSRC1 1965 43 1.17E-05
10 CXXC1 948 77 3.38E-05
LAS & LVID & LVM & AD
1 RSRC1 1965 43 7.85E-10
2 MLF1 1068 33 8.85E-10
3 NIF3L1 467 46 1.95E-09
4 PPIL3 493 50 2.03E-09
5 CLK1 526 55 3.56E-09
6 ORC2 486 40 1.75E-08
7 BZW1 596 65 2.71E-08
8 ALDOB 918 79 3.51E-08
9 ZNF189 886 80 4.62E-08
10 TMEM246 1028 74 4.68E-08

Table 4. Top ranked genes for the combined analysis of echocardiographic traits and AD after genome wide 
association meta-analysis and gene-wise statistics calculation. AROT: aortic root; LAS: Left Atrial Size; LVID: 
Left Ventricular Internal Dimension; LVM: Left Ventricular Mass; LVWT: Left Ventricular Wall Thickness; NSPS: 
number of SNPs genotyped for the gene; NPARAM: number of SNPs used for computing the gene wise statistics.

https://doi.org/10.1038/s41598-019-52724-2


1 0Scientific RepoRtS |         (2019) 9:16665  | https://doi.org/10.1038/s41598-019-52724-2

www.nature.com/scientificreportswww.nature.com/scientificreports/

blood pressure and obesity. In fact, the CARDIA Brain MRI Substudy found association of higher left atrial vol-
ume in early adulthood with impairment of white matter integrity in midlife, but not for ventricular measures50.

A recent GWAS by our group on AD clinical endophenotypes revealed that vascular processes were the main 
causal mechanisms in pure AD51. But our findings are compatible to a broader definition of- dementia which 
includes other diseases such vascular dementia, fronto-temporal dementia or Lewy Body diseases among others. 
In fact, the rule is the presence of multiple pathologies in the brain of people with dementia including pervasive 
vascular lesions52. The link between dementia and cardiac conditions is not well understood. The old concept 
of cardiogenic dementia was based on the high incidence of cardiac dysrhythmias observed in patients with 
dementia due to vascular causes53. However, the relation between coronary heart disease (CHD) or HF and AD in 
epidemiological studies remains controversial, with some studies showing an association with cognitive impair-
ment and dementia54–56 whereas others found no association57,58. The fact that both conditions are competing 
risks complicates the study of their relationship. Lower cardiac index levels are related to lower cerebral blood 
flow in older adults free of CVD59, but individuals with cardiac conditions that did not result in premature death 
might include many individuals chronically exposed to brain hypoperfusion due to reduced cardiac output that 
adaptively decreased cerebrovascular resistance through arteriolar dilatation. This kind of antagonistic pleiotropy 
between these phenotypes has been previously suggested by Beeri et al. after observing that better cognitive per-
formance was associated with worse cardiac functioning in very elderly subjects60.

Moreover, whereas enlarged ventricular volume (LV hypertrophy) is a marker of diastolic dysfunction, LVM 
is also a marker of cardiovascular health, positively correlated with physical activity and cardiorespiratory fit-
ness61,62. Population based studies have shown an inverted U-shaped association for LVM values and age, since 
they rise in adolescence and decline with increased age63,64. Furthermore, a U-shaped association between left 
ventricular ejection fraction (LVEF), a marker of systolic dysfunction, and abnormal cognitive decline has been 
reported, with increased dementia risk at the lowest and highest LVEF quintiles65.

To our knowledge, this is the first report analysing shared genetic factors between echocardiographic meas-
ures and AD. This method for estimating genome-wide pleiotropy has the advantage of being free of potential 
confounders determined by shared epidemiological risk factors such as high blood pressure or atherosclerosis. 
Our results show a negative genetic correlation for the ventricular measures LVID and LVM and AD, point-
ing to antagonist pleiotropic effects of shared genes by AD and LV cardiac measures, the main known func-
tions of which are related to apoptosis (CASP8, CASP10, CFLAR, PHIP) and neurotransmission (GABRR1). 
Interestingly, some CASP8 variants have been previously associated with AD66, and the protein has been shown 
to be involved in amyloid related pathways and activated in both blood and brain cells from AD patients1,67–69. 
In our study, the GABA receptor GABRR1 was consistently associated in all meta-analyses involving heart traits 
and AD. Neurotransmission affects both cardiac and neuronal performance, and a few studies have examined 
synapse and neuron loss in AD brains and suggested that synaptic changes precede neuron loss70,71. In fact, GABA 
signalling is reduced in AD and other mental disorders such as dementia with Lewy bodies or frontotemporal 
lobar degeneration72–74. By contrast, augmented inhibitory GABAergic neurotransmission has been reported in 
animals models of HF and LVH through the involvement of the paraventricular nucleus of the hypothalamus75,76.

In summary, our GWAS data suggest the influence of gene variants affecting the apoptotic/inflammation 
signalling pathway on left ventricular morphology and cardiac function, uncover novel candidate gene variants 
regulating echocardiographic phenotypes and establish a genetic link between cardiac morphology alterations, 
mental illness and AD involving key genes in the regulation of apoptotic signalling that deserve functional assess-
ment due to their diagnostic and therapeutic potential. These results should be replicated in larger datasets in 
order to confirm the observed pleiotropic effects for genes associated with echocardiographic traits.

Data availability
Full meta-analysis results for echocardiographic traits are available at Mendeley data (https://data.mendeley.
com/, https://doi.org/10.17632/22jdjghnsp.1).
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